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The Knudsen layer in rarefied gas dynamics is essentially described by a half-
space boundary-value problem of the linearized Boltzmann equation, in which
the incoming data are specified on the boundary and the solution is assumed to
be bounded at infinity (Milne problem). This problem is considered for a binary
mixture of hard-sphere gases, and the existence and uniqueness of the solution,
as well as some asymptotic properties, are proved. The proof is an extension of
that of the corresponding theorem for a single-component gas given by Bardos,
Caflisch, and Nicolaenko [Comm. Pure Appl. Math. 39:323 (1986)]. Some
estimates on the convergence of the solution in a finite slab to the solution of
the Milne problem are also obtained.

KEY WORDS: Knudsen layer; gas mixtures; Milne problem; Boltzmann equa-
tion; rarefied gas dynamics.

1. INTRODUCTION

The behavior of a rarefied gas around bodies is described by the Boltzmann
equation. The steady behavior of the gas when the Knudsen number, the
ratio of the mean free path of the gas molecules to the characteristic length
of the system, is small has thoroughly been investigated by Sone by means
of a systematic asymptotic analysis. (10–13) According to this asymptotic
theory, the solution of the Boltzmann equation and its kinetic boundary
condition is expressed as a sum of two parts: one is the moderately varying



overall solution whose macroscopic variables are described by the fluid-
dynamic-type equations, and the other is the correction term that is appre-
ciable only in a thin layer with thickness of a few mean free paths adjacent
to the boundary (Knudsen-layer). We call the former the hydrodynamic
solution and the latter the Knudsen-layer correction. The appropriate
boundary conditions for the fluid-dynamic-type equations are determined
by the analysis of the Knudsen-layer correction (see the following para-
graph). The types of the equations and boundary conditions differ depend-
ing on the physical situation under consideration. However, except for the
case where strong evaporation or condensation is taking place on the
boundary, the analysis of the Knudsen layer is essentially reduced to that
of the half-space boundary-value problem of the linearized Boltzmann
equation with or without a source term. The reader is referred to ref. 13 for
comprehensive and detailed description of the asymptotic theory.

The half-space problem for the Knudsen-layer correction is such that
the boundary data for the incoming molecules contain the values of the
macroscopic variables of the hydrodynamic solution on the boundary.
These boundary values are determined together with the Knudsen-layer
correction which vanishes rapidly outside the Knudsen layer. The bound-
ary values thus obtained give the appropriate boundary conditions for
the fluid-dynamic-type equations. In other words, the matching of the
Knudsen layer with the domain outside the layer is made by selecting
the boundary conditions for the fluid-dynamic-type equations that make
the Knudsen-layer correction vanish outside the Knudsen layer.

The existence and uniqueness of the solution for the Knudsen-layer
correction as well as the boundary values of the hydrodynamic solution
was conjectured by Grad (6) in 1969 (see also ref. 13). However, his conjec-
ture was proved much later, in a slightly different but equivalent formula-
tion, by Bardos, Caflisch, and Nicolaenko, (1) Cercignani, (2) Coron, Golse,
and Sulem, (4) Golse and Poupaud, (5) and Maslova. (7) For instance, Bardos,
Caflisch, and Nicolaenko (1) considered the Milne and Kramers problems
for the linearized Boltzmann equation for hard-sphere molecules with or
without a source term, that is, the half-space boundary-value problem in
which the velocity distribution for the incoming molecules from the
boundary is specified and that at infinity is assumed to be bounded (Milne
problem) or linearly growing (Kramers problem). (The names Milne and
Kramers problems are used in different ways depending on the authors.
Here, we follow Bardos, Caflisch, and Nicolaenko (1)). In the mean time,
extensive numerical analysis of these problems has been carried out in
many papers in connection with the physically fundamental problems, such
as the temperature jump, shear slip, and thermal creep (see, for example,
refs. 8 and 14).
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The works that we mentioned above are all for a single-component
gas. Recently, Takata and Aoki investigated, by a systematic asymptotic
analysis of the Boltzmann equation, the steady behavior of binary gas
mixtures for small Knudsen numbers. (17) They considered the mixtures
around solid bodies or condensed phases of one of the component gases in
the situation where the Mach number of the flow is as small as the
Knudsen number while the variation of the other macroscopic variables
may be large, and derived a set of fluid-dynamic-type equations and
boundary conditions. In the derivation of the boundary conditions, they
presented and used the conjectured theorem, corresponding to Grad’s
conjecture for a single-component gas, for the Knudsen-layer correction for
a gas mixture (see Appendix B of ref. 17).

The aim of the present paper is to give a proof of the conjectured
theorem for a binary mixture of hard-sphere gases. The paper is organized
as follows. After summarizing some basic properties of the Boltzmann
equation in Section 2, we first prove, in Section 3, the existence and
uniqueness theorem for the Milne problem (without a source term) and
some asymptotic properties of the solution. The proof follows that of
Bardos, Caflisch, and Nicolaenko (1) for a single-component gas. In Sec-
tion 4, we consider the Kramers problem and show that it can be reduced
to the Milne problem. The Milne problem with a source term is dealt with
in Section 5. Finally in Section 6, we give some estimates on the conver-
gence of the solution in a finite slab to the solution of the Milne problem.

2. DESCRIPTION

Consider a mixture of two types of hard-sphere gases: gas A and gas B.
The indexes a ¥ {A, B} and b ¥ {A, B} are systematically used. The ma and
da are the (dimensionless) mass and diameter of a molecule of component
gas a.

The Boltzmann equation for such a binary mixture is

“tFA+zNxFA=JAA(FA, FA)+JBA(FB, FA), (1)

“tFB+zNxFB=JAB(FA, FB)+JBB(FB, FB), (2)

where the bilinear operators Jab represent the elastic collisions. More pre-
cisely for any a, b ¥ {A, B} one has

Jba(Fb, Fa)(z)=FF [Fb(z −

g) Fa(zŒ) − Fb(zg) Fa(z)] Bba dw dzg (3)
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with

Bba=
1

4 `2p
1da+db

2
22

|(zg − z) · w|, w ¥ S2, (4)

zŒ=z −(ba)=z+
2mb

ma+mb
[(zg − z) · w] w, (5)

z −

g=z −(ba)
g =zg −

2ma

ma+mb
[(zg − z) · w] w. (6)

Observe that the mapping (associated to the operator Jba) (z, zg) W (zŒ, z −

g)
is an involution which preserves (the mass,) the momentum and the energy:

mazŒ+mbz −

g=maz+mbzg, (7)
1
2 ma |zŒ|2+1

2 mb |z −

g |2=1
2 ma |z|2+1

2 mb |zg |2. (8)

For F=(FA, FB) the collision operator C is therefore given by

C(F)=RJAA(FA, FA)+JBA(FB, FA)
JAB(FA, FB)+JBB(FB, FB)

S (9)

and the ‘‘two species’’ Boltzmann equation can be written in a more
synthetic form according to the formula:

“tF+zNxF=C(F). (10)

The classical invariance property of the Boltzmann collision operator is
generalized as follows:

Proposition 2.1. For any pair of smooth functions G=(GA, GB)
one has

(C(F), G)(L2(R
3))2= − 1

4 IAA(FA, GA) − 1
2 IAB(FA, FB, GA, GB)

− 1
4 IBB(FB, GB) (11)

with

IAA(FA, GA)=FFF [FA(z −

g) FA(zŒ) − FA(zg) FA(z)]

× [GA(z −

g)+GA(zŒ) − GA(zg) − GA(z)] BAA dw dzg dz,
(12)
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IAB(FA, FB, GA, GB)=FFF [FA(z −

g) FB(zŒ) − FA(zg) FB(z)]

× [GA(z −

g)+GB(zŒ) − GA(zg) − GB(z)] BAB dw dzg dz,
(13)

IBB(FB, GB)=FFF [FB(z −

g) FB(zŒ) − FB(zg) FB(z)]

× [GB(z −

g)+GB(zŒ) − GB(zg) − GB(z)] BBB dw dzg dz.
(14)

The proof left to the reader is similar to the classical one in the case of
one species.

Corollary 2.1. For any function F one has

(C(F), log F)(L2(R
3))2=1C(F), R log FA

log FB
S2

(L2(R
3))2

[ 0 (15)

and the equality holds if and only if F is ‘‘bi-Maxwellian:’’

F=R
rA

(2pT)
3
2

e−mA |z − u|2

2T

rB

(2pT)
3
2

e−mB |z − u|2

2T

S . (16)

Proof. The Proposition 2.1 is used with GA=log FA and GB=log FB,
and one has

IAA(FA, log FA)=FFF [FA(z −

g) FA(zŒ) − FA(zg) FA(z)]

× log 5FA(z −

g) FA(zŒ)
FA(zg) FA(z)

6 BAA dw dzg dz, (17)

IAB(FA, FB, log FA, log FB)=FFF [FA(z −

g) FB(zŒ) − FA(zg) FB(z)]

× log 5FA(z −

g) FB(zŒ)
FA(zg) FB(z)

6 BAB dw dzg dz, (18)

IBB(FB, log FB)=FFF [FB(z −

g) FB(zŒ) − FB(zg) FB(z)]

× log 5FB(z −

g) FB(zŒ)
FB(zg) FB(z)

6 BBB dw dzg dz. (19)
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Each of the above three terms is non-negative and therefore

(C(F), log F)(L2(R
3))2 [ 0. (20)

Now if in (20) the equality holds one has

0=IAA(FA, log FA)=IBB(FB, log FB)=IAB(FA, FB, log FA, log FB). (21)

The first two relations of (21) imply that FA and FB are Maxwellians:

FA=
rA

(2pTA)
3
2

e−|z − uA|2

2TA , FB=
rB

(2pTB)
3
2

e−|z − uB|2

2TB . (22)

With the last relation of (21), one has

0=log 5FA(z −

g) FB(zŒ)
FA(zg) FB(z)

6

=log FA(z −

g)+log FB(zŒ) − log FA(zg) − log FB(z) (23)

or eventually

|z −

g − uA|2

2TA +
|zŒ − uB|2

2TB =
|zg − uA|2

2TA +
|z − uB|2

2TB (24)

for all (z, zg, zŒ, and z −

g) which satisfy the relations (5) and (6) with a=B
and b=A. This gives, as a consequence of the conservation of momentum
and energy,

uA=uB and mATA=mBTB (25)

and the proof is completed. L

The analysis of the Knudsen layer involves fluctuations near equilib-
rium states. For the problems of evaporation and condensation one
assumes that the bulk velocity is zero and by a change of scale the bulk
temperature is taken equal to one. For Maxwellian and bi-Maxwellian the
following notations are introduced:

MA=
1

(2p)
3
2

e−mA |z|2

2 , MB=
1

(2p)
3
2

e−mB |z|2

2 , M=RrAMA

rBMB
S . (26)
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For the linearized version the function F=(FA, FB) in (10) is replaced
by the function (rAMA(1+fA), rBMB(1+fB)) leading to the linearized
version of (10):

“t fA+zNx fA=(MA)−1 (rA[JAA(MA, MAfA)+JAA(MAfA, MA)]

+rB[JBA(MB, MAfA)+JBA(MBfB, MA)]), (27)

“t fB+zNx fB=(MB)−1 (rA[JAB(MA, MBfB)+JAB(MAfA, MB)]

+rB[JBB(MB, MBfB)+JBB(MBfB, MB)]), (28)

which is written in a synthetic way according to the formula:

“t f+zNx f+L(f )=0 (29)

with f WL(f ) being the linear operator defined by the formula:

L(f )=LRfA

fB
S

=−R
(MA)−1 (rA[JAA(MA, MAfA)+JAA(MAfA, MA)]

+rB[JBA(MB, MAfA)+JBA(MBfB, MA)])

(MB)−1 (rA[JAB(MA, MBfB)+JAB(MAfA, MB)]

+rB[JBB(MB, MBfB)+JBB(MBfB, MB)])

S . (30)

For the operator L one introduces the space H defined by the scalar
product:

Of, gP=71fA

fB
2 , 1

gA

gB
28

=F
R

3
rAfA(z) gA(z) MA(z) dz+F

R
3

rBfB(z) gB(z) MB(z) dz.
(31)

The properties of the operator L which are relevant for the study of the
half-space problem are the object of the next.

Proposition 2.2

1. In the space H, L is the sum of a ‘‘diagonal’’ operator f W nf

nf=RnA(z) fA

nB(z) fB
S with d(1+|z|) [ na(|z|) [ c(1+|z|), 0 < d < c < .

(32)
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and of a compact operator

K(f )=RK
A(fA, fB)

KB(fB, fA)
S=RKAA(fA)+KBA(fB)

KAB(fA)+KBB(fB)
S . (33)

The domain of L is the space defined by the formula:

D(L)={f: ||(1+|z|)
1
2 f||H < .} with ||Lf|| [ c0 ||(1+|z|)

1
2 f||H.

(34)

2. The operator L is self-adjoint and non-negative, and satisfies the
relation

OLf, fP=1
4 GAA(fA, fA)+1

2 GAB(fA, fB)+1
4 GBB(fB, fB) (35)

with

GAA(fA, fA)=(rA)2 FFF [fA(z −

g)+fA(zŒ) − fA(zg) − fA(z)]2

× MA(zg) MA(z) BAA dw dzg dz, (36)

GAB(fA, fB)=rArB FFF [fA(z −

g)+fB(zŒ) − fA(zg) − fB(z)]2

× MA(zg) MB(z) BAB dw dzg dz, (37)

and

GBB(fB, fB)=(rB)2 FFF [fB(z −

g)+fB(zŒ) − fB(zg) − fB(z)]2

× MB(zg) MB(z) BBB dw dzg dz. (38)

3. The Kernel of L (Ker L) is the space of 6 dimension, depending
on the parameters

nA, nB, u(=(u1, u2, u3)), h

given by the formula

Ker L=1nA+mAu · z+1
2 h(mA |z|2 − 3)

nB+mBu · z+1
2 h(mB |z|2 − 3)

2 . (39)
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4. Any function f ¥ D(L) can be written as f=qf+wf with
qf ¥ Ker L and wf ¥ (Ker L) + and one has

OLf, fP \ c1 ||(1+|z|)
1
2 wf ||2

H. (40)

Proof. The proof is a straightforward extension of the classical Grad
construction (cf. refs. 3 and 13) and the emphasis is only put on the new
points. The a component of Lf (a ¥ {A, B}) is

5ra FF Ma(zg) Baa dw dzg+rb FF Mb(zg) Bba dw dzg
6 fa

− ra FF Ma(zg) fa(zŒ) Baa dw dzg − rb FF Mb(zg) fa(zŒ) Bba dw dzg

− ra(Ma)−1 Jaa(Mafa, Ma) − rb(Ma)−1 Jba(Mbfb, Ma). (41)

The first line in (41) is na(z) fa and the relation (32) follows from the
estimate:

cab
0 (1+|z|) [ FF Mb(zg) Bba dw dzg [ cab

1 (1+|z|), 0 < cab
0 < cab

1 , (42)

which is valid for any a, b ¥ {A, B} (cf. ref. 13). The second and the third
lines in (41) are Ka(fa, fb) and the operator K

Ka: (fa, fb) W − ra FF Ma(zg) fa(zŒ) Baa dw dzg

− rb FF Mb(zg) fa(zŒ) Bba dw dzg

− (Ma)−1 [raJaa(Mafa, Ma)+rbJba(Mbfb, Ma)]

is compact.
Then the fact that L is self-adjoint in H follows by inspection. To

obtain the formula (35)–(38) one plugs in the formula (11) FA=
rAMA(1+gfA), FB=rBMB(1+gfB), GA=fA and GB=fB, and retains
the terms of order 1 with respect to g. A basic consequence of these for-
mulas is the fact that the operator L is non-negative and that Ker L
coincides with the space of functions f=(fA, fB) such that

fA(z −

g)+fA(zŒ) − fA(zg) − fA(z) — 0, (43)

fB(z −

g)+fB(zŒ) − fB(zg) − fB(z) — 0, (44)
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and

fA(z −

g)+fB(zŒ) − fA(zg) − fB(z) — 0. (45)

From Eqs. (43) and (44) one deduces that for f=(fA, fB) ¥ Ker L , fA

and fB are contained in the five dimensional spaces defined by the for-
mulas:

fA(z)=nA+mAuA · z+
hA

2
(mA |z|2 − 3), (46)

fB(z)=nB+mBuB · z+
hB

2
(mB |z|2 − 3). (47)

Then the relation (45) implies that uA=uB and hA=hB. This completes the
proof of point 3 of Proposition 2.2.

Since the operator K is compact, 0 is an isolated point in the spectra
of the positive self-adjoint operator L and one has

OLf, fP \ d0 ||f||2
H for -f ¥ (Ker L) + . (48)

Furthermore with (32) one has for every f ¥ D(L)

OLf, fP \ d ||(1+|z|)
1
2 f||2

H − ||K|| ||f||2
H. (49)

Writing f=qf+wf one deduces (40) from (48) and (49). L

3. MILNE PROBLEM

The Milne problem is the analysis of the solution of the half-space
problem in R+

x1
× R3

z

z1 “x1
f+Lf=0 in R+

x1
× R3

z (50)

with given incoming data at the point x1=0. With the analysis of the
previous section the results of ref. 1 are directly adapted leading to the
following:

Theorem 3.1. Assume that the function g(z)=(gA(z), gB(z)) given
for z1 > 0 satisfies the estimate

rA F
z1 > 0

(1+|z|) |gA(z)|2 MA(z) dz

+rB F
z1 > 0

(1+|z|) |gB(z)|2 MB(z) dz < .. (51)
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Then there exists a unique solution f(x1, z) of the problem (50) with
|z|

1
2 f(x1, z) ¥ L.(R+

x1
; H) and “x1

f(x1, z) ¥ L2
loc(R+

x1
; H) which satisfies

the relations:

f(0, z)=g(z) for z1 > 0 (52)

and

Oz1 fP=RrA > z1 fA(x1, z) MA(z) dz

rB > z1 fB(x1, z) MB(z) dz
S=0. (53)

Furthermore for x1 going to infinity this solution converges exponentially
to a ‘‘hydrodynamic’’ state q.

f :

||(1+|z|)
1
2 (f − q.

f )||2
H [ Ce−sx1 with s < 2c1, (54)

where

q.

f =1nA
g +mA(u2, gz2+u3, gz3)+1

2 hg(mA |z|2 − 3)
nB

g +mB(u2, gz2+u3, gz3)+1
2 hg(mB |z|2 − 3)

2 . (55)

Proof. The proof follows the arguments of ref. 1 and just the main
elements and the way to adapt them to the present situation are given
below. We denote by D the set of functions f such that |z|

1
2 f(x1, z) ¥

L.(R+
x1

; H) and “x1
f(x1, z) ¥ L2

loc(R+
x1

; H) which are solutions of the
equation:

z1 “x1
f+Lf=0 in R+

x1
× R3

z (56)

with zero mean flux

Oz1 fP=RrA > z1 fA(x1, z) MA(z) dz

rB > z1 fB(x1, z) MB(z) dz
S=0, (57)

and decompose f into its hydrodynamic and kinetic parts:

f=qf+wf, qf ¥ Ker L, wf ¥ Ker L + . (58)

Multiplying (for the H scalar product) Eq. (56) by f, integrating first from
0 to X, and then letting X Q . give, with (40), for any f ¥ D the estimate:

F
.

0
||(1+|z|)

1
2 wf ||2

H dx1 < .. (59)
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Next observe that for X ¥ Ker L such that Oz1XP=0 one has

0=“x1
Oz1X(z), fP=“x1

Oz1X(z), qf+wfP. (60)

Then for parity reason with (57) one has (no difference with the scalar case
of ref. 1)

Oz1X(z), qfP — 0, (61)

and Eq. (60) is reduced to

“x1
Oz1X(z), wfP — 0. (62)

With (59) this implies that

Oz1X(z), wfP — 0. (63)

Therefore one comes with the relation

Oz1 f, fP=Oz1wf, wfP (64)

and finally obtains:

1
2 “x1

Oz1wf, wfP+OLwf, wfP=0. (65)

This implies that the quantity Oz1wf, wfP is non-negative and decays
monotonically to zero because L is non-negative.

For the uniqueness of the solution one uses the linearity and considers
a solution that vanishes for x1=0 and z1 > 0:

f(0, z)=RfA(0, z)

fB(0, z)
S=0 for z1 > 0. (66)

From (65) one deduces for such solution the relation:

F
.

0
||(1+|z|)

1
2 wf(x1, z)||2

H dx1=0. (67)

Therefore for such solution Eq. (50) becomes

z1 “x1
qf=0, (68)
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where

qf=1nA
0 (x1)+mA[u2, 0(x1) z2+u3, 0(x1) z3]+h0(x1)

2 (mA |z|2 − 3)

nB
0 (x1)+mB[u2, 0(x1) z2+u3, 0(x1) z3]+h0(x1)

2 (mB |z|2 − 3)
2 . (69)

As in ref. 1, p. 335 one multiplies a component of (68) by the vector

z1
R

1
z2

z3

|z|2

S Ma(z), (70)

integrates over z1 > 0, and concludes that qf is identically zero. This
concludes the proof of uniqueness.

For the exponential integrated decay of wf:

F
.

0
esx1 ||(1+|z|)

1
2 wf(x1, z)||2

H dx1 < . with s < 2c1, (71)

one multiplies (for the H scalar product) Eq. (50) by esx1f, uses again the
relation

Oz1 f, fP=Oz1wf, wfP (72)

and the estimate (40), and proceeds as in ref. 1. The pointwise decay of wf

is obtained along the same line and the exponential convergence of f to a
hydrodynamic state:

q.

f =1nA
g +mA(u2, gz2+u3, gz3)+1

2 hg(mA |z|2 − 3)
nB

g +mB(u2, gz2+u3, gz3)+1
2 hg(mB |z|2 − 3)

2 (73)

follows.
For the existence (and the numerical computation) of the solution, one

starts with a problem in a finite slab 0 < x1 < L and solves the problem (50)
with the same incoming boundary condition at x1=0 and a specular
boundary condition at x1=L:

fa(L, z1, z2, z3)=fa(L, −z1, z2, z3) for a=(A, B). (74)

To prove the existence of such solution a Fredholm alternative is used to
reduce the problem to the fact that any solution of

z1 “x1
f+Lf=0 in {0 < x1 < L} × R3

z (75)
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with the boundary condition (74) and zero incoming boundary condition

f(0, z)=0 for z1 > 0 (76)

is identically zero. Multiplying (for the H scalar product) Eq. (75) by f
and integrating over 0 < x1 < L give, with the specular boundary condition
(74), the relation

c1 F
L

0
||(1+|z|)

1
2 wf(x1, z)||2

H dx1

[ F
L

0
OLf, fP dx1=1

2 Oz1 f(0, z), f(0, z)P

[ 1
2 F

z1 > 0
rAMAz1 |fA(0, z)|2 dz+1

2 F
z1 > 0

rBMBz1 |fB(0, z)|2 dz

=0. (77)

This implies that wf is identically zero and the rest of the proof follows as
in ref. 1.

Now denote by fL the solution of the slab problem. From Eq. (75)
multiplied in H by X :

“x1
Oz1X, fLP=0, (78)

one deduces that any solution of (75) with boundary condition (74) satisfies

Oz1X, fLP=0. (79)

This allows to adapt to the domain ]0, L[ × R3
z (uniformly with respect

to L) all the estimates that were derived above for the half space. Finally
take the limit L Q .. L

Equation (73) defines a ‘‘continuous mapping’’ from the space of
functions g=(gA, gB) such that

rA F
z1 > 0

(1+|z|) |gA(z)|2 MA dz+rB F
z1 > 0

(1+|z|) |gB(z)|2 MB dz < . (80)

into R5 :

g W {nA
g , nB

g , u2, g, u3, g, hg}. (81)

From the uniqueness of the solution one deduces the following
symmetry property:
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Corollary 3.1. Assume that the incoming data g(z)=(gA(z), gB(z))
are invariant under rotation with respect to the z1 axis, i.e., they depend
only on z1 and `z2

2+z2
3. Then the same property holds for the solution of

Milne problem:

|z|
1
2 f(x1, z) ¥ L.(R+

x1
; H), “x1

f(x1, z) ¥ L2
loc(R+

x1
; H), (82)

z1 “x1
f+Lf=0 in R+

x1
× R3

z , (83)

f(0, z)=g(z), (84)

Oz1 fP=RrA > z1 fA(x1, z) MA(z) dz

rB > z1 fB(x1, z) MB(z) dz
S=0. (85)

This property is often used in numerical computations of the Milne
problem for the reduction of the number of independent variables. As is
shown in the next section, the Kramers problem can be reduced to the
Milne problem, so that the same symmetry property holds for the Kramers
problem.

Example 3.1. As an example of application of Theorem 3.1 and
Corollary 3.1, we take weak evaporation and condensation problem. Con-
sider a binary mixture of vapors (species A and B) in contact with their
plane condensed phase. Far from the interface the mixture is supposed to
be in a uniform equilibrium state. If the temperature Tw of the condensed
phase is different from that of the mixture, evaporation or condensation
takes place at the interface. When the temperature difference is small, the
problem can be formulated as follows:

z1“x1
f+Lf=0 in R+

x1
× R3

z ,

f(0, z)=0 for z1 > 0,

f Q
1nA+mA(u1z1+u2z2+u3z3)+1

2 h(mA |z|2 − 3)
nB+mB(u1z1+u2z2+u3z3)+1

2 h(mB |z|2 − 3)
2 as x1 Q ..

Here nA (or nB) corresponds to the difference of the number density of
species A (or B) between the mixture at infinity and the mixture in (phase)
equilibrium with the condensed phase at temperature Tw, h to the difference
of the temperature of the mixture at infinity from Tw, and ui to the flow
velocity of the mixture at infinity. Note that nA, nB, h, and ui are constants.
Now consider the function f − (mAz1, mBz1) u1. The function satisfies the
estimate (52) and the relation (53) in Theorem 3.1, and the theorem can be
applied. Then one finds that the solution of the present problem f exists
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and the constants nA, nB, h, u2, and u3 are unique for u1. From
Corollary 3.1 and the linearity of the problem one further finds that the
following relation holds when steady evaporation or condensation takes
place:

u2=u3=0, RnA

nB

h

S=Rc1

c2

c3

S u1, (ci: constant).

With the linearity of the problem and the fact that the x1 independent
hydrodynamic states are solutions of the Milne problem, the Theorem 3.1
can be rephrased as follows:

Theorem 3.2. For any function g(z)=(gA(z), gB(z)) given for
z1 > 0 which satisfies the estimate

rA F
z1 > 0

(1+|z|) |gA(z)|2 MA(z) dz

+rB F
z1 > 0

(1+|z|) |gB(z)|2 MB(z) dz < ., (86)

there exists a unique set of values {nA
g , nB

g , u2, g, u3, g, hg} such that the solu-
tion of the Milne problem with incoming data:

RgA

gB
S−1nA

g +mA(u2, gz2+u3, gz3)+1
2 hg(mA |z|2 − 3)

nB
g +mB(u2, gz2+u3, gz3)+1

2 hg(mB |z|2 − 3)
2 (87)

and zero mean flux converges exponentially to zero.

The solution of the Milne problem with incoming data given by (87) is
called the Knudsen-layer solution of the half-space problem with incoming
data g.

Remark 3.1. Theorem 3.2 is the theorem which was conjectured and
used in ref. 17. The correspondence between the notation in Appendix B of
ref. 17 and the present one is as follows:

(fA, fB) } (fA, fB),

C
b=A, B

KbaCbL̃ba(fb, fa) } −L(f ),

(m̂A, m̂B) } (mA, mB),

(cA+3
2 c4, cB+3

2 c4, c2, c3, c4) } − (nA
g , nB

g , u2, g, u3, g, hg).
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4. KRAMERS PROBLEM

The Kramers problem is to solve the Boltzmann equation (50) in the
half space R+

x1
× R3

z , with given incoming data at x1=0 and a distribution
growing linearly at x1=. in the following way:

lim
x1 Q .

d
dx1

1
3

F rAmAz2fAMA dz=− lim
x1 Q .

d
dx1

1
3

F rBmBz2fBMB dz=pA, (88)

lim
x1 Q .

d
dx1

1F rAmAz2 fAMA dz+F rBmBz2 fBMB dz2=u2, (89)

lim
x1 Q .

d
dx1

1F rAmAz3 fAMA dz+F rBmBz3 fBMB dz2=u3, (90)

lim
x1 Q .

d
dx1

11
3

F rA(mAz2 −3) fAMA dz+
1
3

F rB(mBz2 −3) fBMB dz2=h. (91)

The problem can be reduced to the Milne problem as follows. Consider the
function of the form f0+x1 f1 with f0 and f1 independent of x1 which
satisfies the above condition at infinity. Then f0 and f1 satisfy

Lf1=0, (92)

Lf0=−z1 f1. (93)

These equations imply that f1 ¥ Ker L and z1 f1 ¥ (Ker L) + . From these
and the conditions at infinity one finds that

fA
1 =pA+mAuA

2 z2+mAuA
3 z3+1

2 h(mAz2 − 5), (94)

fB
1 =−pA+mBuB

2 z2+mBuB
3 z3+1

2 h(mBz2 − 5). (95)

Then there is a unique solution f0 ¥ (Ker L) + with Lf0=−z1 f1. The
Kramers problem for f can be reduced to the Milne problem for f −
(f0+x1 f1).

Remark 4.1. The coefficients pA, u2, u3, and h are, respectively, the
gradients of the partial pressure of component gas A, flow velocities of
the mixture in the x2- and x3-directions, and temperature of the mixture.
The first equality in (88) implies that the pressure of the total mixture is
uniform far from the boundary. Note that, for a single-component gas, the
Kramers problem is well-posed for linearly growing flow velocities in x2

and x3-directions and temperature, but not for linearly growing pressure.
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5. MILNE PROBLEM WITH SOURCE TERM

This section is devoted to the analysis of the half-space problem with
an internal source term h(x1, z)=(hA(x1, z), hB(x1, z))

z1 “x1
f+Lf=h in R+

x1
× R3

z (96)

with given incoming data at x1=0.
Since the problem is linear the issue of uniqueness concerns solutions

with h — 0 and therefore this is completely covered by the results of pre-
vious sections. Only existence and asymptotic behavior have to be con-
sidered. The proof follows the line of the Section 8 in ref. 1. Using once
more the linearity one observes that it is enough to consider the homoge-
neous boundary-value problem (i.e., g(z) ’ 0) and the following two cases:

-x1 > 0 h1(x1, .) ¥ (Ker L) + (97)

and

-x1 > 0 h2(x1, .) ¥ Ker L. (98)

In the first case one starts as in Section 3 from the solution in a finite slab
0 < x1 < L of

z1 “x1
f+Lf=h1 in {0 < x1 < L} × R3

z (99)

with zero incoming boundary condition at x1=0 and a specular boundary
condition at x1=L. As above one writes f=qf+wf and from the specular
boundary condition one deduces, for any X(z) ¥ Ker L such that Oz1XP=0,
the relations:

Oz1X(z), qfP — 0, (100)

“x1
Oz1X(z), wfP — 0, (101)

Oz1X(z), wfP — 0, (102)

and finally

Oz1 f, fP=Oz1wf, wfP. (103)

In particular the solution satisfies in the slab the relation:

Oz1 fP — 0. (104)
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Multiplying Eq. (99) by ecx1f gives

1
2 “x1

ecx1Oz1wf, wfP−
c

2
ecx1Oz1wf, wfP+ecx1OLwf, wfP=Oh1, ecx1fP. (105)

Since h1 belongs to (Ker L) + one has:

Oh1, ecx1fP=Oh1, ecx1wfP. (106)

Then with the Cauchy–Schwarz estimate and for c2 < 2c1 and small enough
one obtains, with an L independent constant C, the relation:

F
L

0
ec2x1 ||(1+|z|)

1
2 wf(x1, z)||2

H dx1 [ C F
L

0
ec2x1 ||(1+|z|)

1
2 h1(x1, z)||2

H dx1

(107)

and continuing as in the Section 3 one proves the following proposition:

Proposition 5.1. Assume that

h1(x1, z) ¥ L.(R+
x1

, (Ker L) + ) (108)

and for some c > 0

F
.

0
ecx1||(1+|z|)

1
2 h1(x1, z)||2

H dx1 < .. (109)

Then there exists a unique ‘‘bounded’’ solution f of the Milne problem
with source h1:

z1 “x1
f+Lf=h1, f(0, z)=0 for z1 > 0. (110)

This solution satisfies the relation

Oz1 fP=0 (111)

and for 0 < c2 small enough the estimate

F
.

0
ec2x1 ||(1+|z|)

1
2 wf(x1, z)||2

H dx1 < .. (112)

And finally it converges exponentially to a hydrodynamic state:

q.

f =1nA
0 +mA(u2, 0z2+u3, 0z3)+1

2 h0(mA |z|2 − 3)

nB
0 +mB(u2, 0z2+u3, 0z3)+1

2 h0(mB |z|2 − 3)
2 . (113)
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Now assume that h=h2 is an x1 dependent hydrodynamic state:

h2(x1, z)=RnA(x1)
nB(x1)

S+u1(x1) z1
RmA

mB
S+u2(x1) z2

RmA

mB
S

+u3(x1) z3
RmA

mB
S+

1
2

h(x1) RmA |z|2 − 3
mB |z|2 − 3

S (114)

which also satisfies for some c > 0 the hypothesis

F
.

0
ecx1 ||(1+|z|)

1
2 h2 (x1, z)||2

H dx1 < .. (115)

In order to reduce the problem to a problem with a source in (Ker L) +

one introduces a function f0 such that

− z1 “x1
f0+h2 ¥ (Ker L) + (116)

and

F
.

0
ecx1 ||(1+|z|)

1
2 (−z1 “x1

f0+L(f0)+h2)||2
H dx1 < .. (117)

When this is realized one observes that

− (z1 “x1
f0+Lf0)+h2 ¥ (Ker L) + . (118)

Therefore according to Proposition 5.1 and Theorem 3.1 there exists a
unique solution f1 of the problem

z1 “x1
f1+Lf1=−(z1 “x1

f0+Lf0)+h2 (119)

with

f1(0, z)=−f0(0, z) for z1 > 0, (120)

Oz1 f1P=0, (121)

and one obtains:

z1“x1
(f1+f0)+L(f1+f0)=h2 for x1 > 0. (122)
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To realize (116) and (117) one looks for solutions of the form:

f0(x1, z)=a(x1) RmA

mB
S+z1

RmAUA(x1)
mBUB(x1)

S+U2(x1) z1z2
R (mA)2

(mB)2
S

+U3(x1) z1z3
R (mA)2

(mB)2
S+D(x1) z1 |z|2 R (mA)2

(mB)2
S . (123)

The relation (116) is equivalent to:

Oz1 “x1
f0, XP=Oh2, XP, -X ¥ Ker L, (124)

which is equivalent to the following system of 6 linear equations:

aŒ(x1)=u1(x1),

U −

2(x1)=u2(x1), (125)

U −

3(x1)=u3(x1),

and

(UA)Œ (x1)+5DŒ(x1)=nA(x1),

(UB)Œ (x1)+5DŒ(x1)=nB(x1),

5rA

(mA)
3
2
(UA)Œ (x1)+

5rB

(mB)
3
2
(UB)Œ (x1)+35 1 rA

(mA)
3
2
+

rB

(mB)
3
2

2 DŒ(x1)

=3 31 rA

(mA)
3
2
+

rB

(mB)
3
2

2 h(x1)+
rA

(mA)
3
2
nA(x1)+

rB

(mB)
3
2
nB(x1)4 . (126)

Because of the hypothesis (115), the integration of (125) and (126) from x1

to . leads to the convergence of the functions a(x1), UA(x1), UB(x1),
U2(x1), U3(x1), and D(x1) to some constants for x1 Q .. One can choose
these constants as zero because their values do not influence the relation
(124). Then the solution of (125) is explicitly given by

a(x1)=−F
.

x1

u1(s) ds,

U2(x1)=−F
.

x1

u2(s) ds, (127)

U3(x1)=−F
.

x1

u3(s) ds,
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and, observing that the determinant of (126) is

10 1 rA

(mA)
3
2
+

rB

(mB)
3
2

2 ,

the functions UA(x1), UB(x1), and D(x1) are by linear sums of the integrals:

− F
.

x1

nA(s) ds, − F
.

x1

nB(s) ds, and − F
.

x1

h(s) ds.

Thus the hypothesis (115) implies that f0(x1, z) converges exponentially
fast to zero for x1 Q .. Finally, using the fact that (mAz1, mBz1) is a solu-
tion of the linearized Boltzmann equation (without source term), with the
above construction we have obtained the following:

Theorem 5.1. Assume that the data g and h satisfy the hypothesis

rA F
z1 > 0

(1+|z|) |gA(z)|2 MA dz+rB F
z1 > 0

(1+|z|) |gB(z)|2 MB dz < .

(128)

and for some c > 0

F
.

0
ecx1 ||(1+|z|)

1
2 h(x1, z)||2

H dx1 < .. (129)

Then there exists a unique function f with |z|
1
2 f(x1, z) ¥ L.(R+

x1
; H) which

is a solution of the problem:

z1 “x1
f+Lf=h in R+

x1
× R3

z , (130)

f(0, z)=g(0, z) for z1 > 0, (131)

7RmA

mB
S z1, f8=0 at x1=0. (132)

This solution converges exponentially fast to a hydrodynamic set of the
following form:

q.

f =1nA+mA(u1z1+u2z2+u3z3)+1
2 h(mA |z|2 − 3)

nB+mB(u1z1+u2z2+u3z3)+1
2 h(mB |z|2 − 3)

2 (133)
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with

u1=1 rA

(mA)
1
2

+
rB

(mB)
1
2

2−1

F
.

0

7R (mA)2

(mB)2
S, h8 dx1. (134)

In particular when h is a pure non-hydrodynamic set

-x1 > 0 h(x1, z) ¥ (Ker L) + , (135)

the u1 vanishes in (133) and the flux of each component gas is equivalent to
zero:

Oz1 fP=0. (136)

Remark 5.1. In contrast to Theorem 3.1, specified is not the flux
Oz1 fP of each component gas but the flux O(mA

mB) z1, fP of total mixture at
x1=0. Note that the latter as well as the former is in general not conserva-
tive because of the source term h. Specifying the flux of total mixture, not
the flux of each component gas, is due to the difference between UA(0) and
UB(0) in f0.

Remark 5.2. The Milne problem with a source term occurs when
one considers the higher orders of the Knudsen number in the analysis of
the Knudsen layer. (13) For instance, when the Reynolds number is small
(i.e., of the order of the Knudsen number), the source term comes from the
curvature of boundary. (10) When the Reynolds number is O(1), there are
two types of origins of the source term: one is the curvature of boundary
and the other is the interaction between the velocity distributions in the
lower orders of the Knudsen number through the Boltzmann collision
integrals. (11)

6. SOME ESTIMATES RELATED TO SLAB PROBLEM

The solution fL in the bounded domain ]0, L[ × R3
z with the reflection

condition which was introduced in the proof of Theorem 3.1 is also used
for numerical computation. Therefore below are given some refined esti-
mates concerning its convergence to the solution of the Milne problem.
Such estimate in the case of the one component linearized Boltzmann
equation has already been obtained by Peralta; (9) in fact the present section
is an extension of his approach to the multicomponent case.
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First we prove

Lemma 6.1. The solution fL is bounded (uniformly with respect
to L) in the space L.([d, L]; H) (d > 0).

Proof. The proof follows from a uniform estimate on (1+|z|)
1
2

“x1
wfL

in L2(]d, L[; H). First introduce a smooth scalar function f(x1)
equal to 1 for x > d and zero near x1=0 and consider the equation

z1 “
2
x1

(ffL)+L “x1
(ffL)=z1 “x1

(fŒ(x1) fL). (137)

Multiply in H (137) by “x1
(ffL) and integrate over [0, L] to obtain

c1 F
L

0
||(1+|z|)

1
2 w“x1

(ffL) ||
2
H dx1

[ F
L

0
Oz1w“x1

(fŒfL), w“x1
(ffL)P dx1 − 1

2 Oz1“x1
fL, “x1

fLP(L). (138)

With the specular reflection at x1=L and the Galilean invariance of the
collision operator, one has

(LfL)(L, z1, z2, z3)=(LfL)(L, −z1, z2, z3) (139)

and from the equation one deduces the relation:

(“x1
fL)(L, z1, z2, z3)=−(“x1

fL)(L, −z1, z2, z3). (140)

Therefore in (138) one has

Oz1“x1
fL, “x1

fLP(L)=0 (141)

and the proof of the lemma can be completed by standard Cauchy–Schwarz
estimates. L

With the above lemma one has

Proposition 6.1. Let g=(gA, gB) the incoming data and denote by
f ¥ D the corresponding solution of the half-space problem (with zero
mean flux) and by fL the solution of the equation

z1 “x1
f+Lf=0 in {0 < x1 < L} × R3

z (142)
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with the same incoming data and specular reflection condition at x1=L.
Then fL converges exponentially to f. More precisely, for two positive
constants a < c1 and d < c1 − a,

1
2

|||z1 |
1
2 [f(0, z) − fL(0, z)]||2

H

+1c1 −
a
2
2 F

L

0
eax1 ||(1+|z|)

1
2 w(f − fL) ||

2
H dx1 [ Ce−dL. (143)

Proof. Let us denote by r the function f − fL. Introduce the equa-
tion for reax1/2 and multiply in H this equation by reax1/2 to obtain

−
1
2
Oz1r(0, z), r(0, z)P+1c1 −

a
2
2 F

L

0
eax1 ||(1+|z|)

1
2 wr ||

2
H dx1

[
1
2

|Oz1r(L, z), r(L, z)P| eax1. (144)

Observe that on one hand r(0, z) is zero for z1 > 0, which gives

− 1
2 Oz1r(0, z), r(0, z)P=1

2 O|z1 | r(0, z), r(0, z)P. (145)

Then on the other hand notice that the function r satisfies the same
orthogonality properties as the functions f and fL. This implies the rela-
tion:

|Oz1r(L, z), r(L, z)P|=|Oz1wr(L, z), wr(L, z)P|

[ |Oz1wf(L, z), wf(L, z)P|+2 |Oz1wfL
(L, z), wf(L, z)P|

+|Oz1wfL
(L, z), wfL

(L, z)P|. (146)

With the specular reflection one has

Oz1wfL
(L, z), wfL

(L, z)P=0 (147)

and therefore (143) follows from the uniform estimate on wfL
(L, z)

(Lemma 6.1) and from the exponential decay of wf(L, z). L

Corollary 6.1. The solution with specular reflection at x1=L gives
an exponential estimate of the asymptotic for the hydrodynamic limit q.

f

[cf. (73)] of the solution of the Milne problem according to the formula:

||q.

f − qfL
(L, z)||H [ CŒe−dL. (148)
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Proof. Integrate over [0, L] the equation for r multiplied in H by
Xq{z1 > 0}. Here q{z1 > 0} is the characteristic function of {z1 > 0}. Then use
the estimate (143) to show that the difference between qf(L, z) and
qfL

(L, z) is exponentially small (cf. ref. 1). Finally use the exponential
convergence of qf(L, z). L

Remark 6.1. For instance, in refs. 15 and 8 for a single-component
gas and in ref. 16 for a binary gas mixture, the half-space problems are
solved numerically by restricting the x1 region (the half space) to a finite
slab on the artificial boundary of which the specular reflection condition is
imposed. In the above references, the influence of the truncation of region
was carefully examined by changing the width of slab. The influence was
found to be negligible if the width is larger than about 20 times as long as
the mean free path. Proposition 6.1 and Corollary 6.1 support such a prac-
tical solution process.
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